Published on

How to Convert Gray Code To Binary? Solve using K-map.

digital_electronics
Gray-Code
Binary
Gray-Code-To-Binary
Truth-Table
K-map
Implementation
Logic-Gates
Design

Conversion of Gray Code to Binary using K-map method.

Finding Truth table and expressions for K-map.

Implementation using logic gates.

 

Truth Table -

To find truth table first it is neccessary to know about gray code and binary code then it can be found easily.

I have made truth table for your simplicity.

 

How To Solve -

Now, To solve it we need truth table which i have already made.

Lets consider first for output B3 , see  column B3 and find the rows where B3 is 1 and notedown corresponding input values.

Now, for this corresponding value write decimal value.

Now, once you got all of these things you are ready for writing your first expression - 

write it as ,  B3 = Σm( 8, 9, 10, 11, 12, 13, 14, 15 )

Similarly take output B2 and find 1's in the column and for input find corresponding decimal value and write it.

 

Output Expression For K-map -

 B3 = Σm( 8, 9, 10, 11, 12, 13, 14, 15 )

 B2 = Σm( 4, 5, 6, 7, 12, 13, 14, 15 )

 B1 = Σm( 2, 3, 4, 5, 8, 9, 14, 15 )

 B0 = Σm( 1, 2, 4, 7, 8, 11, 13, 14)

 

K-map for B3 -

 B3 = Σm( 8, 9, 10, 11, 12, 13, 14, 15 )

 B3 = G

 

K-map for B2 -

 B2 = Σm( 4, 5, 6, 7, 8, 9, 10, 11 )

B2 = G3'G2 +G3G2

K-map for B1 -

 B1 = Σm( 2, 3, 4, 5, 8, 9, 14, 15 )

 B1 = G3G2'G1' + G3'G2G1' + G3'G2'G1 + G3G2G

 

K-map for B0 -

 B0 = Σm( 1, 2, 4, 7, 8, 11, 13, 14)

 B0 = G0G1'G2'G3' + G0'G1G2'G3' + G0'G1'G2G3' + G0G1G2G3' + G0G1'G2G3 + G0'G1G2G3 + G0G1G2'G3 + G0G1'G2'G3

 

Output Boolean Expression -

 B3 = G

 

 B2 = G3'G2 +G3G2' = G3 ⊕ G

 

 B1 = G3G2'G1' + G3'G2G1' + G3'G2'G1 + G3G2G

       = G1' ( G3G2’ + G3’G2 ) + G1 ( G3’G2’ + G3G2

      = G1' ( G3 ⊕ G2 ) + G1 ( G3 ⊕ G2 )' 

      = G3 ⊕ G2 ⊕ G

 

 B0 = G0G1'G2'G3' + G0'G1G2'G3' + G0'G1'G2G3' + G0G1G2G3' + G0G1'G2G3 + G0'G1G2G3 + G0G1G2'G3 + G0G1'G2'G3

      = G2'G3' ( G0G1' + G0'G1 ) + G2G3' (G0'G1' + G0G1 ) + G2G3 ( G0G1' + G0'G1 ) + G2'G3 (G0'G1' + G0G1

      = G2'G3' ( G0 ⊕ G1 ) + G2G3' ( G0 ⊕ G1 )' + G2G3 ( G0 ⊕ G1 ) + G2'G3 ( G0 ⊕ G1 )'

      = ( G0 ⊕ G1 ) [ G2'G3' + G2G3 ] + ( G0 ⊕ G1 )' [ G2G3' + G2'G3

      = ( G0 ⊕ G1 ) ( G2 ⊕ G3 )' +  ( G0 ⊕ G1 )' ( G2 ⊕ G3

      = G3 ⊕ G2 ⊕ G1 ⊕ G

 

Implementation using Basic Gates -